Localized Functional Principal Component Analysis.

نویسندگان

  • Kehui Chen
  • Jing Lei
چکیده

We propose localized functional principal component analysis (LFPCA), looking for orthogonal basis functions with localized support regions that explain most of the variability of a random process. The LFPCA is formulated as a convex optimization problem through a novel Deflated Fantope Localization method and is implemented through an efficient algorithm to obtain the global optimum. We prove that the proposed LFPCA converges to the original FPCA when the tuning parameters are chosen appropriately. Simulation shows that the proposed LFPCA with tuning parameters chosen by cross validation can almost perfectly recover the true eigenfunctions and significantly improve the estimation accuracy when the eigenfunctions are truly supported on some subdomains. In the scenario that the original eigenfunctions are not localized, the proposed LFPCA also serves as a nice tool in finding orthogonal basis functions that balance between interpretability and the capability of explaining variability of the data. The analyses of a country mortality data reveal interesting features that cannot be found by standard FPCA methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On convergence of sample and population Hilbertian functional principal components

In this article we consider the sequences of sample and population covariance operators for a sequence of arrays of Hilbertian random elements. Then under the assumptions that sequences of the covariance operators norm are uniformly bounded and the sequences of the principal component scores are uniformly sumable, we prove that the convergence of the sequences of covariance operators would impl...

متن کامل

Functional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis

Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...

متن کامل

Extracellular exosomes and preeclampsia: a microarray-based study and functional enrichment analysis

Background:  Preeclampsia (PE) is a heterogeneous pregnancy disease which the exact pathophysiology of it is unknown. Recently exosomes have been indicated as a causative factor in the pathogenesis of PE. The aim of the study was to investigate in microarray library data to extract the differentially expressed genes (DEGs) in PE and to perform a functional enrichment analysis to predict the rol...

متن کامل

Asymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data

Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 110 511  شماره 

صفحات  -

تاریخ انتشار 2015